4.1 Solving Polynomial Equations

A Polynomial Equation

A polynomial equation is defined as:

$$
P(x)=0
$$

where $P(x)$ is a polynomial function.
Note. The numbers x satisfying the polynomial equation are called the roots or the solutions of the polynomial equation.

Note. The roots (solutions) of the polynomial equation $P(x)=0$ are the same as the zeros of the polynomial function $y=P(x)$.

B Grouping

Some polynomial equations may be solved by grouping terms adequately.

Note. Is not easy to see how to group terms in order to solve the equation.

C Integral Zeros Theorem

If $x=b$ is an integral zero of the polynomial $P(x)$ with integral coefficients, then b is a factor (divisor) of the constant term a_{0} of the polynomial.

Note. A real zeros of the polynomial function $P(x)$ is also called x-intercept because the graph touches or crosses the x-axis at this number.

Ex 1 . Show that $x=\sqrt{3}$ is a solution of the polynomial equation
$x^{4}+9=6 x^{2}$

Ex 2 . Solve for x by grouping.
$8 x^{3}-12 x^{2}-2 x+3=0$

Ex 3 . Solve for x by looking first at integral roots (solutions).
$\left(x^{2}-13\right) x=15-3 x^{2}$

D Rational Zero Theorem
If $x=\frac{b}{a}$ is an rational zero of the polynomial $P(x)$ with integral coefficients, then b is a factor (divisor) of the constant term a_{0} and a is a factor (divisor) of the leading coefficient a_{n}.

Ex 4. Solve for x by looking first at rational roots (solutions).
$3 x^{4}+\frac{7}{2} x^{3}-\frac{2}{3} x^{2}-\frac{3}{2} x-\frac{1}{3}=0$

Ex6. Solve for x
$x^{4}-2 x^{3}-4 x^{2}+6 x+3=0$ given that $x=1+\sqrt{2}$ is one of its roots.

Ex 7. How many real roots does the equation given below have?

$$
x^{3}-x^{2}-1=0
$$

Use technology to find (real) x.

